JUNIOR HIGH SCHOOL 1

UNIT		$\begin{aligned} & \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
NUMBERS AND NUMERALS	The pupil will be able to:			E.g. in $27,430,561$ the value of 6 is 60 , the value of 3 is 30,000 , the value of 7 is $7,000,000$, etc Discus with pupils the difference between the place value of a digit in a numeral and the value of a digit in a numeral.	Let pupils:
	1.1.3	$\begin{aligned} & \text { use }<\text { and }>\text { to } \\ & \text { compare and order } \\ & \text { numbers up to } \\ & 100,000,000 \end{aligned}$	Comparing and Ordering numbers up to $100,000,000$	Guide pupils to use less than (<) and the greater than (>) symbols to compare and order whole numbers, using the idea of place value.	compare and order given whole numbers (up to 8-digits)
	1.1.4	round numbers to the nearest ten, hundred, thousand and million	Rounding numbers to the nearest ten, hundred, thousand and million	Guide pupils to use number lines marked off by tens, hundreds, thousands, and millions to round numerals to the nearest ten, hundred, thousand, and million.	write given numerals to the nearest ten, hundred, thousand, or million
				Using the number line guide pupils to discover that; (i) numbers greater than or equal to 5 are rounded up as 10 (ii) numbers greater than or equal to 50 are rounded up as 100 (iii) numbers greater than or equal to 500 are rounded up as 1000	
	1.1.5	identify prime and composite numbers	Prime and Composite numbers	Guide pupils to use the sieve of Eratosthenes to identify prime numbers up to 100 . Discuss with pupils that a prime number is any whole number that has only two distinct factorsitself and 1. A composite number is any whole number other than one that is not a prime number.	

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.1 (CONT'D) NUMBERS AND NUMERALS	1.1.6 find prime factors of natural numbers 1.1.7 identify and use the HCF of two natural numbers in solving problems	Prime factors Highest Common Factor (HCF) of up to 3 -digit numbers	Guide pupils to use the Factor Tree to find factors and prime factors of natural numbers. Express a natural number as a product of prime factors only. Guide pupils to list all the factors of two or three natural numbers E.g. 84 and 90 Set of factors of $84=\{1,2,3,4,6,7,12,14,21,28$, $42,84\}$ Set of factors of $90=\{1,2,3,5,6,9,10,15,18,30$, $45,90\}$ Guide pupils to identify which numbers appear in both lists as common factors Set of common factors $=\{1,2,6\}$ Guide pupils to identify the largest number which appears in the common factors as the Highest Common Factor(H.C.F), i.e. 6 Also, guide pupils to use the idea of prime factorization to find the HCF of numbers. Pose word problems involving HCF for pupils to solve	express a given natural number as the product of prime factors only. find the HCF of two or three given natural numbers solve word problems involving HCF E.g. A manufacturer sells toffees which are packed in a small box. One customer has a weekly order of 180 toffees and another has a weekly order of 120 toffees. What is the highest number of toffees that the manufacturer should pack in each box so that he can fulfil both orders with complete boxes?

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.1 (CONT'D) NUMBERS AND NUMERALS	1.1.8 identify and use the LCM of two or three natural numbers to solve problems 1.1.9 carry out the four operations on whole numbers including word problems	Least Common Multiples (LCM) up to 2-digit numbers Addition, Subtraction, Multiplication and Division of whole numbers including word problems	Guide pupils to find the Least Common Multiple (LCM) of given natural numbers by using; - Multiples; E.g. 6 and 8 Set of multiples of $6=\{6,12,18,24,30,36,42$, 48, ...\} Set of multiples of $8=\{8,16,24,32,40,48, \ldots\}$ Set of common multiples $=\{24,48, \ldots\}$ L.C.M of 6 and $8=\{24\}$ - Product of prime factors; E.g. 30 and 40 Product of prime factors of $30=2 \times 3 \times 5$ Product of prime factors of $40=2 \times 2 \times 2 \times 5$ \therefore L.C.M of 30 and $40=2 \times 2 \times 2 \times 3 \times 5=120$ Guide pupils to Pose word problems involving LCM for pupils to solve Guide pupils to add and subtract whole numbers up to 8 -digits Guide pupils to multiply 4-digit whole numbers by 3-digit whole numbers up to the product 100,000,000 Guide pupils to divide 4-digit whole numbers by 1 or 2-digit whole numbers with or without remainders Pose word problems involving addition, subtraction, multiplication and division of whole numbers for pupils to solve	find the L.C.M of two or three natural numbers solve word problems involving L.C.M E.g. Dora and her friend are walking through the sand. Dora's footprints are 50 cm apart and her friend's footprints are 40 cm apart. If her friend steps in Dora's first footprint. What is the minimum number of steps that her friend should take before their footprints match again? add and subtract given 8-digit whole numbers multiply given 4-digit whole numbers by 3-digit whole numbers divide given 4-digit numbers by 1 or 2 digit numbers solve word problems involving addition, subtraction, multiplication and division of whole numbers.

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.1 (CONT’D) NUMBERS AND NUMERALS	1.1.10 state and use the properties of basic operations on whole numbers to solve problems 1.1.11 find good estimates for the sum, product and quotient of natural numbers	Properties of operations Estimation of sum, product and quotient of natural numbers	Guide pupils to establish the commutative property of addition and multiplication i.e. $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$ and $\boldsymbol{a} \times \boldsymbol{b}=\boldsymbol{b} \times \boldsymbol{a}$ Guide pupils to establish the associative property of addition and multiplication. $\begin{array}{ll} \text { i.e. } & (a+b)+c=a+(b+c) \text { and } \\ (a \times b) \times c=a \times(b \times c) \end{array}$ Guide pupils to establish the distributive property i.e. $a \times(b+c)=(a \times b)+(a \times c)$ Guide pupils to establish the zero property (identity) of addition. i.e. $\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$, therefore zero is the identity element of addition Guide pupils to establish the identity property of multiplication. i.e. $a \times 1=1 \times a=a$, therefore the identity element of multiplication is 1 Guide pupils to find out the operations for which various number systems are closed. Discuss with pupils that an estimate is only an approximate answer to a problem. The estimate may be more or less than the actual. To find the estimate of a sum, guide pupils to round up or down each addend and add. Example;	Find the value of n if $4 \times n=6 \times 4$. Find which combination of sums will make the multiplication easier in the sum $2 \times 4 \times 9 \times$ 25 ? Put in brackets to make the sentence correct: i. $2 \times 3+4=14$ ii. $6+4 \times 3+2=20$ iii. $36=4 \times 3+6 \times 4$ What should be in the brackets to make the sentence true? $9 \times(2+5)=(9 \times 2)+(\quad)$ estimate a given sum, product or quotient solve real life problems involving estimation

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.1 (CONT'D) NUMBERS AND NUMERALS			Guide pupils to use rounding up or down 'to estimate products. Example; Guide pupils to use multiples of ten to estimate a 2-digit quotient. E.g. $478 \div 6$ $\begin{aligned} & 70 \times 6=420 \\ & 80 \times 6=480 \end{aligned}$ Guide pupils to identify that since 478 is between 420 and 480 , the quotient will be less than 80 but greater than 70 . Guide pupils to use multiples of 100 to estimate a 3-digit quotient. E.g. $5372 \div 6$ $\begin{aligned} & 700 \times 6=4200 \\ & 800 \times 6=4800 \\ & 900 \times 6=5400 \end{aligned}$ Guide pupils to identify that since 5372 is between 4800 and 5400 , the quotient will be less than 900 but greater than 800. Pose real life problems involving estimation for pupils to solve. E.g. ask pupils to find from a classroom shop, the cost of a bar of soap. Pupils then work out, how much they will need approximately, to be able to buy four bars of soap	

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.2 SETS	1.2.1 identify sets of objects and numbers 1.2.2 describe and write sets of objects and numbers 1.2.3 distinguish between different types of sets	Sets of objects and numbers Describing and writing Sets Types of Sets (Finite, Infinite, Unit and Empty [Null] Sets)	Guide pupils to collect and sort objects into groups and let pupils describe the groups of objects formed Guide pupils to form other sets(groups) according to a given criteria using objects and numbers Introduce the concept of a set as a well defined collection of objects or ideas Guide pupils to use real life situations to form sets. E.g. a set of prefects in the school Introduce ways of describing and writing sets using: - Defining property; i.e. describing the members (elements) of a set in words. E.g. a set of mathematical instruments. - Listing the members of a set using only curly brackets $\}$ ' and commas to separate the members. E.g. $\mathbf{S}=\{0,1,2, \ldots, 26\}$ NOTE: Use capital letters to represent sets. E.g. $\mathbf{A}=\{$ months of the year $\}$. Guide pupils to list members of different types of sets, count and classify the sets as: 1. Finite Set (a set with limited number of members) 2. Infinite Set (a set with unlimited number of elements). 3. Unit set (a set with a single member). 4. Empty (Null): - a set with no elements or members. Note: Use real life situations to illustrate each of the four sets described above	form sets using real life situations describe and write sets using words as well as the curly brackets state with examples the types of sets

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.2 (CONT'D) SETS	1.2.4 distinguish between equal and equivalent sets 1.2.5 write subsets of given sets with members up to 5 1.2.6 list members of an intersection and union of sets	Equal and Equivalent Sets Subsets	Guide pupils to establish equal sets as sets having the same members. E.g. $\mathbf{P}=\{0$ dd numbers between 2 and 8$\} \Rightarrow \mathbf{P}=\{3,5,7\} . \mathbf{Q}=$ \{prime numbers between 2 and 8$\} \Rightarrow \mathbf{Q}=\{3,5$, 7\}, \mathbf{P} is equal to \mathbf{Q}. Introduce equivalent sets as sets having the same number of elements. E.g. $\mathbf{A}=\{1,3,5,7\}$ and $\mathbf{B}=\{\Delta, \square, O, \downarrow ; \mathbf{A}$ is equivalent to \mathbf{B}. Note: \mathbf{P} and \mathbf{Q} are also equivalent sets but sets \mathbf{A} and \mathbf{B} are not equal sets. Thus all equal sets are equivalent but not all equivalent sets are equal. Introduce the notation for "number of elements in the set" as $n(A), n(B)$. Example: $A=\{2,4,6,8\}$. Then $n(A)=4$ Brainstorm with pupils on the concept of a universal set. Explain subsets as the sets whose members can be found among members of another set. E.g. if \mathbf{A} $=\{1,2,3, \ldots, 10\}$ and $\mathbf{B}=\{3,4,8\}$, then set \mathbf{B} is a subset of set \mathbf{A}. Introduce the symbol of subset ' \subset '. E.g. $B \subset A$ or $A \supset B$. Note: Introduce the idea of empty set as a subset of every set and every set as a subset of itself Guide pupils to form two sets from a given set. $\begin{gathered} \text { E.g. } Q=\{\text { whole numbers up to } 15\} \\ A=\{0,1,10,11,12\} \\ B=\{1,3,4,12\} \end{gathered}$ Let pupils write a new set containing common members from sets A and B, i.e. a set with members 1 and 12 as the intersection of sets A and B.	identify and state two sets as equivalent or equal sets

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 1.2 (CONT'D) SETS	The pupil will be able to:		Introduce the intersection symbol ' \cap ' and write A intersection B as $A \cap B=\{1,12\}$. Let pupils list all the members of two sets without repeating any member to form a new set. Explain that this new set is called the union of sets A and B. It is written as $A \cup B$ and read as A union B.	Let pupils:
UNIT 1.3 FRACTIONS	1.3.1 find the equivalent fractions of a given fraction	Equivalent fractions	TLMs: Strips of paper, Fraction charts, Addition machine tape, Cuisenaire rods, etc. Revise the concept of fractions with pupils Guide pupils to write different names for the same fraction using concrete and semi-concrete materials. Assist pupils to determine the rule for equivalent fractions i.e. $\frac{a}{b}=\frac{a}{b} \times \frac{c}{c}$ Thus to find the equivalent fraction of a given fraction, multiply the numerator and the denominator of the fraction by the same number.	write equivalent fractions for given fractions
	1.3.2 compare and order fractions	Ordering fractions	Using the concept of equivalent fractions involving the LCM of the denominators of fractions, guide pupils to compare two fractions. E.g. Arrange the following fractions in descending order: $\frac{5}{6}, \frac{7}{8}, \frac{3}{4}$ LCM of 6,8 and 4 is 24 , the equivalent fractions	arrange a set of given fractions in - ascending order - descending order

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.3 (CONT’D) FRACTIONS	1.3.3 add and subtract fractions with 2-digit denominators	Addition and subtraction of fractions including word problems	are $\frac{20}{24}, \frac{21}{24}, \frac{18}{24}$ and the descending order is $\frac{3}{4}, \frac{5}{6}, \frac{7}{8}$ Guide pupils to order fractions in ascending and descending (order of magnitude) using concrete and semi concrete materials as well as charts showing relationships between fractions. Using the concept of equivalent fractions involving the LCM of the denominators of fractions, guide pupils to add and subtract fractions with 2 -digit denominators. $\text { E.g. (1) } \frac{2}{15}+\frac{1}{12}$ LCM of 15 and 12 is 60 ; the equivalent fractions are $\frac{8}{60} \text { and } \frac{5}{60} \text { so } \frac{2}{15}+\frac{1}{12}=\frac{8}{60}+\frac{5}{60}=\frac{13}{60}$ similarly $\frac{2}{15}-\frac{1}{12}=\frac{8}{60}-\frac{5}{60}=\frac{3}{60}$ Assist pupils to use the concept of Least Common Multiple (L.C.M) to write equivalent fractions for fractions to be added or subtracted. Pose word problems involving addition and subtraction of fractions for pupils to solve.	solve word problems involving addition and subtraction of fractions

UNIT	$\begin{gathered} \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.3 (CONT'D) FRACTIONS	1.3.4 multiply fractions	Multiplication of fractions including word problems	Revise with pupils multiplication of a fraction by a whole number and vice versa E.g. (i) $\frac{3}{4} \times 8$ (ii) $12 \times \frac{2}{3}$ Guide pupils to multiply a fraction by a fraction, using concrete and semi-concrete materials as well as real life situations. Perform activities with pupils to find a general rule for multiplying a fraction by a fraction as $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$ Let pupils discover that to multiply a fraction by a fraction, find: (i) the product of their numerators (ii) the product of their denominators Pose word problems involving multiplication of fractions for pupils to solve.	solve word problems involving multiplication of fractions
	1.3.5 divide fractions	Division of fractions including word problems	Guide pupils to divide a whole number by a fraction by interpreting it as the number of times that fraction can be obtained from the whole number. E.g. $3 \div \frac{1}{4}$ can be interpreted as "how many onefourths pieces are there in 3 wholes?" From the illustration, there are 12 one-fourths pieces in 3 wholes.	divide: (i) a whole number by a fraction (ii) a fraction by a whole number (iii) a fraction by a fraction solve word problems involving division of fractions

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.3 (CONT'D) FRACTIONS			Guide pupils to use the reciprocal of a number (multiplicative inverse) in re-writing and solving the division sentence (Note: The product of a number and its reciprocal is 1). $\begin{aligned} & 3 \div \frac{1}{4}=\square \text { can also be interpreted as } \\ & \quad \square \times \frac{1}{4}=3 \text {, i.e. "what times } \frac{1}{4} \text { is } 3 \text { ?". } \end{aligned}$ Multiply both sides of by the reciprocal $\begin{aligned} \square \times \frac{1}{4} \times \frac{4}{1} & =3 \times \frac{4}{1} \\ \square & =12 \end{aligned}$ Also $3 \div \frac{1}{4}$ can be written as $\frac{3}{1} \div \frac{1}{4}$ or $\frac{\frac{3}{1}}{\frac{1}{4}}$ and multiplying through by the reciprocal of the divisor $3 \div \frac{1}{4}=\frac{\frac{3}{1}}{\frac{1}{4}}=\frac{\frac{3}{4} \times \frac{4}{1}}{\frac{3}{4} \times \frac{3}{1}}=\frac{\frac{3}{4} \times \frac{4}{1}}{1}=12$ Hence, the quotient is obtained by multiplying the dividend by the reciprocal of the divisor. E.g. $\frac{4}{9} \div \frac{5}{7}=n \quad \Rightarrow \frac{4}{9}=\frac{5}{7} \times n$ multiply each side by the inverse of the divisor $\frac{5}{7}$ to obtain, $\frac{4}{9} \times \frac{7}{5}=n \times \frac{5}{7} \times \frac{7}{5}$	

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.3 (CONT’D) FRACTIONS			Therefore $\frac{4}{9} \div \frac{5}{7}=\frac{4}{9} \times \frac{7}{5}=\frac{28}{45}$ $n=\frac{28}{45}$ Guide pupils to deduce the rule that to divide by a fraction, multiply the dividend by the reciprocal of the divisor. i.e. $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}$ Pose word problems involving division of fractions for pupils to solve.	
UNIT 1.4 SHAPE AND SPACE	1.4.1 draw plane shapes and identify their parts	Plane shapes	TLMs: Empty chalk boxes, Cartons, Tins, Cut-out shapes from cards. Real objects of different shapes, Solid shapes made from card boards: prisms - cubes, cuboids, cylinders; pyramids - rectangular, triangular and circular pyramids. Guide pupils to identify shapes that have i. congruent sides ii. all sides equal iii. congruent angles Guide pupils to identify shapes that are symmetrical and show the lines of symmetry Assist pupils to classify real objects into various plane shapes such as triangles, right-angled triangles, trapeziums, kite, etc. and solid shapes such into prisms, pyramids etc.	Which of shapes below i. have all sides equal? ii. ave right angles? iii. re prisms? iv. re symmetrical E.g. Draw rectangle WXYZ and show and name the symmetries

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 1.4 (CONT'D) SHAPE AND SPACE	The pupil will be able to: 1.4.2 sort shapes according to given descriptions	Investigations with shapes	Guide pupils to draw plane shapes of given dimensions (such as rectangles, squares and triangles) in square grids, and name their vertices with letters. E.g. The shape $P Q R$ in the figure is right angled triangle. Using corners of the grid as vertices, investigate the different right angled triangles that can be drawn in a 3×3 grid and label the vertices. Identify which of the triangles drawn i. have a pair of congruent sides ii. has the longest side iii. are symmetrical.	Let pupils:
	1.4.3 find the relation between the number of faces, edges and vertices of solid shapes	Relation connecting faces, edges and vertices of solid shapes	Guide pupils to make nets of solid shapes from cards, fold and glue them to form the solid shapes - cubes, cuboids, pyramids, triangular prism, pyramids, tetrahedron and octahedron. Put pupils investigate and record the number of faces, edges and vertices each solid shape has using either the real objects or solid shapes made from cards. Let pupils record their findings using the following table:	Find the number of faces, vertices and edges in a hexagonal prism.

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.4 (CONT'D) SHAPE AND SPACE			Pupils brainstorm to determine the relation between the number of faces, edges and vertices of each solid shape. i.e. $F+V-2=E$ or $F+V=E+2$ Encourage pupils to think critically and tolerate each other's view toward solutions.	
UNIT 1.5 LENGTH AND AREA	1.5.1 solve problems on perimeter of polygons	Perimeter of polygons	TLMs: Geoboard, Graph paper, Rubber band Cut-out shapes (including circular shapes), Thread Revise the concept of perimeter as the total length or measure round a plane shape using practical activities. Guide pupils to measure the sides of the shapes drawn under objective 4.1.2 above and find the perimeter of shapes. Let them investigate the triangle with the largest perimeter that can be drawn in the 3×3 square grid using corners of the grid as vertices. Guide pupils to investigate the largest rectangle that can be drawn a 4×4 square grid using corners of the grid as vertices. Guide pupils to measure the sides of the rectangles and find their perimeter. Assist them to discover the rule for finding the perimeter of a rectangle as $P=2($ Length + Width $)$ Guide pupils to draw different polygons with equal sides in square grid using corners of the grid as vertices. Guide pupils to also discover that the perimeter of a regular polygon is $P=n \times$ Length, where n is the number of sides. Pose word problems for pupils to solve	find the perimeter of given shapes drawn in square grids solve word problems involving perimeter of polygons

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 1.6 (CONT'D) POWERS OF NATURAL NUMBERS	The pupil will be able to: 1.6.2 use the rule (i) $\quad a^{n} \times a^{m}=a^{(n+m)}$ (i) $\quad a^{n} \div a^{m}=a^{(n-m)}$ to solve problems 1.6.3 use the fact that the value of any natural number with zero as exponent or index is 1	Multiplication and division of powers Zero as an exponent	Guide pupils to discover the idea of the power of a number E.g. $2 \times 2 \times 2 \times 2=2^{4}$ and 2^{4} is the power. $\text { i.e. Power }\left\{\sqrt{2^{4}}\right. \text { Index or exponent }$ Guide pupils to distinguish between factors and prime factors of natural numbers. Assist pupils to write a natural number as powers of a product of its prime factors E.g. $72=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$ Guide pupils to perform activities to find the rule for multiplying and dividing powers of numbers. i.e. (i) $a^{n} \times a^{m}=a^{(n+m)}$ (ii) $a^{n} \div a^{m}=a^{(n-m)}$ where $n>m$. Perform activities with pupils to discover that for any natural number $a, a^{0}=1$ i.e. (i) $2^{4} \div 2^{4}=\frac{2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2}=1$ (ii) $2^{4} \div 2^{4}=2^{4-4}=2^{0}=1$	Let pupils: solve problems involving the use of the rule $a_{n}^{n} \times a_{m}^{m}=a_{(n-m)}^{(n+m)}$ and $a^{n} \div a^{m}=a^{(n-m)}$ where $\mathrm{n}>\mathrm{m}$ solve problems involving the use of the rule $a^{n} \div a^{m}=a^{(n-m)}$ where $\mathrm{n}=\mathrm{m}$

UNIT		$\begin{aligned} & \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:				Let pupils:
UNIT 1.7 INTRODUCTION TO CALCULATORS	1.7.1 identify some basic keys on the calculator and their functions		Basic functions of the keys of the calculator	Introduce pupils to some of the basic keys of a calculator and guide them to use it properly. E.g. $C, M R, M+,+/, \sqrt{\text { etc. }}$	solve real life problems involving several digits or decimals using the calculator
			Calculator for real life computation	Guide pupils to compute simple problems involving all the four preparations using the calculator e.g. find the sum $246+3.64-16.748$ Let pupils use the calculator to solve real life problems involving several digits and/or decimal places. Note: Encourage pupils to use the calculator to check their answers from computations in all areas where applicable.	
UNIT 1.8 RELATIONS	1.8.1	identify and write relations between two sets in everyday life	Relations between two sets in everyday life	Guide pupils to identify the relation between pairs of sets in everyday life, like; Ama "is the sister of" Ernest, Doris "is the mother of" Yaa, etc. Guide pupils to realize that in mathematics we also have many relations. E.g. 2 "is half of" 4 3 "is the square root of" 9 5 "is less than" 8 Note: Encourage pupils to work as a team and have the sense of belongingness	find the relation between a pair of given sets make Family Trees of their own up to their grand parents

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.8 (CONT'D) RELATIONS	1.8.2 represent a relation by matching and identify the domain and the co-domain 1.8.3 identify the co-domain domain and range of a relation for a given domain	Representing a relation as a mapping Co-Domain Domain and Range of a relation	Guide pupils to identify that relation can be represented by matching diagram. i.e. Assist pupils to identify the domain as the set of elements in the first set from the direction of the matching diagram E.g. from the relation "is half of" the domain is the set $D=\{2,3,4,5\}$ Assist pupils to identify the co-domain as the set of elements in the second set from the direction of the mapping diagram. E.g. from the relation "was born on" the co-domain is \{Monday, Friday, Saturday, Sunday\} Guide pupils to identify the range as a subset of the Co-domain E.g. the range for the relation "was born on" is the set R = \{Monday, Friday, Sunday\}	find the domain in a given relation find the co-domain of a given relation find the range of a given relation

UNIT		$\begin{aligned} & \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:				Let pupils:
UNIT 1.10 (CONT'D) CAPACITY, MASS, TIME AND MONEY	1.10.3	use the relationship between the various units of time	TIME: Relationships between various units of time	Guide pupils to find the relation between days, hours, minutes and seconds. Take pupils through activities, which involve addition and subtraction of duration of different events.	identify the relationship between the various units of time
	1.10	solve word problems involving time	Word problems involving the relationship between days, hours, minutes and seconds	Guide pupils to solve word problems involving the relationship between the various units of time.	solve word problems involving the relationship between the various units of time
	$1.10 .5$	solve word problems involving addition and subtraction of various amounts of money	MONEY: Addition and subtraction of money including word problems	Guide pupils to add and subtract monies in cedis and pesewas. Pose word problems on spending and making money for pupils to solve	solve word problems involving the addition and subtraction of amounts of money solve word problems on spending and making money
UNIT 1.11 INTEGERS	1.11.1	explain situations resulting to concept of integers and locate integers on a number line	The idea of integers (Negative and positive integers)	Discuss with pupils everyday situations resulting in the concept of integers as positive and negative whole numbers. E.g.: 1. Having or owing money 2. Floors above or below ground level	locate given integers on a number line
				Guide pupils to write negative numbers as signed numbers. E.g. (-3) or (${ }^{-} 3$) as negative three. Use practical activities to guide pupils to match integers with points on the number line.	

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils:
UNIT 1.11 (CONT’D) INTEGERS	1.11.2 compare and order integers 1.11.3 add integers 1.11.4 subtract positive integers from integers	Comparing and ordering integers Addition of integers integers	Guide pupils to use the number line to compare integers. Guide pupils to arrange three or more integers in ascending or descending order. Guide pupils to use the symbols for greater than ($>$) and less than (<) to compare integers Introduce how to find the sum of integers using practical situations. E.g. adding loans and savings. Guide pupils to find the sum of two integers using the number line (both horizontal and vertical representation) Guide pupils to establish the commutative and associative properties of integers Introduce the zero property (identity) of addition. $\text { E.g. }(-5)+0=0+(-5)=-5$ Introduce the inverse property of addition. $\text { E.g. }(-3)+3=3+(-3)=0 .$ Guide pupils to recognize that ' -1 ' can represent the operation 'subtract 1' or the directed number 'negative 1'. Guide pupils to subtract a positive integer and zero from an integer. - Use practical situations such as the use of the number line, counters, etc. - Use the property that $\begin{aligned} & a+0=a ;-a+0=-a ; 4+0=4 \text { and } \\ & -4+0=-4 . \end{aligned}$	compare and order two or more given integers solve problems involving addition of integers subtract positive integers solve word problems involving subtraction of positive integers

JUNIOR HIGH SCHOOL 2

UNIT	$\begin{gathered} \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 2.1 STATISTICS	The pupil will be able to: 2.1.1 identify and collect data from various sources	Sources of data	Guide pupils through discussions to identify various sources of collecting data E.g. examination results, rainfall in a month, import and exports, etc	Let pupils : state various sources of collecting data
STATISTICS	2.1.2 construct frequency table for a given data	Frequency table	Assist pupils to make frequency tables by tallying in groups of five and write the frequencies.	prepare a frequency table for given data
	2.1.3 draw the pie chart, bar chart and the block graph to represent data	Graphical representation of data - pie chart - bar chart - block graph - stem and leaf plot	Guide pupils to draw the pie chart, bar chart and the block graph from frequency tables. Guide pupils to draw a bar chart for a data presented by a pie chart, Guide pupils to represent a given data using the stem and leaf plot.	draw various graphs to represent data
	2.1.4 read and interpret frequency tables and charts	Interpreting tables and graphs	Guide pupils to read and interpret frequency tables and graphs by answering questions relating to tables and charts/graphs	interpret given tables and charts E.g. answer questions from: 1. frequency table 2. pie chart 3. bar chart, etc

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils
UNIT 2.2 RATIONAL NUMBERS	2.2.1. identify rational numbers	Rational numbers	Guide pupils to identify rational numbers as numbers that can be written in the form $\frac{a}{b} ; \mathrm{b} \neq 0$ E.g. -2 is a rational number because it can be written in the form $-2=\frac{4}{-2}$ or $\frac{-10}{5}$	identify rational numbers
	2.2.2. represent rational numbers on the number line	Rational numbers on the number line	Assist pupils to locate rational numbers on the number line $\begin{aligned} & \begin{array}{l} \text { E.g. }-1.5,0.2,10 \%, \frac{2}{2} \\ 10 \%=0.1 \\ \hline \end{array} \underset{0.1}{\mid} \end{aligned}$	Locate a given rational number on the number line
	2.2.3. distinguish between rational and nonrational numbers	Rational and non-rational numbers	Guide pupils to express given common fractions as decimals fractions. Assist pupils to identify terminating, nonterminating and repeating decimals. Guide pupils to recognise decimal fractions that are non-terminating and non-repeating as numbers that are not rational	explain why 0.333 is a rational number but π is not
	2.2.4. compare and order rational numbers	Comparing and ordering rational numbers	Guide pupils to compare and order two or more rational numbers.	arrange a set of rational numbers in ascending or descending order

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils : rule for the relation?
UNIT 2.3 (CONT'D) MAPPING	2.3.3. find the inverse of a given mapping 2.3.4. make a table of values for a rule of a mapping	Inverse mapping Making a table of values for a given rule	Guide pupils to discover that inverse mapping is (i) going backwards from the second set to the first set. (ii) reversing the operations and their order in a rule. Use the flag diagram in this case. E.g. $y=2 x+3$ \therefore inverse rule is $\frac{x-3}{2}$ Guide students to make tables of values by substituting a set of values into a given rule E.g. $y=2 x+3$	find the inverse of a mapping make a table of values for a given rule of a mapping

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 2.4 (CONT'D) LINEAR EQUATIONS AND INEQUALITIE	The pupil will be able to: 2.4.4. solve linear inequalities	Solving linear inequalities	Using the idea of balancing, guide pupils to solve linear inequalities $\begin{gathered} \text { E.g. } 2 p+4<16 \\ 2 p+4-4<16-4 \\ 2 p<12 \\ p<6 \end{gathered}$	Let pupils : solve linear inequalities
	2.4.5. determine solution sets of linear inequalities in given domains 2.4.6. illustrate solution sets of linear inequalities on the number line	Solution sets of linear in equalities in given domains Illustrating solution sets of linear inequalities on the number line	Guide pupils to determine solution sets of linear inequalities in given domains. E.g. if $x<4$ for whole numbers, then the domain is whole numbers and the solution set $=\{0,1,2,3\}$	determine the solution sets of linear inequalities in given domains
			Assist pupils to illustrate solution sets on the real number line. E.g. (i)	illustrate solution sets of linear inequalities on the number line
			Explain to pupils that the illustration of solution sets will look different when given another domain, e.g. integers (iii) $-2 \leq x \leq 2$	

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 2.5 (CONT'D) ANGLES	The pupil will be able to: 2.5.3. discover why the sum of the angles in a triangle is 180° 2.5.4. calculate the size of angles in triangles 2.5.5. calculate the sizes of angles between parallel lines	Sum of angles in a triangle Solving for angles in a triangle Angles between lines - vertically opposite angles - corresponding angles - alternate angles	- reflex angles Using cut-out angles from triangles, guide pupils to discover the sum of angles in a triangle Guide pupils to draw triangles and use the protractor to measure the interior angles and find the sum Using the idea of sum of angles in a triangle, guide pupils to solve for angles in a given triangle. E.g. find $\angle \mathrm{ABC}$ in the triangle below Assist pupils to demonstrate practically that: 1. vertically opposite angles are equal 2. corresponding angles are equal 3. alternate angles are equal Assist pupils to apply the knowledge of angles between lines to calculatey for angles in different diagrams E.g.	Let pupils : measure and find the sum of angles in given triangles find the sizes of angles in given triangles find the sizes of angles between lines Calculate for angles in different diagrams

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to: 2.5.6. calculate the exterior angles of a triangle	Exterior angles of triangles	Guide pupils to use the concept of straight angles to calculate exterior angles of a given triangle	Let pupils : calculate exterior angles of triangles
UNIT 2.6 SHAPE AND SPACE	2.6.1 construct common solids from their nets	Common solids and their nets: Cube, cuboid, tetrahedron, prisms, pyramids, cylinders cones	TLMs:_Cube, Cuboids, Pyramids, Cones, Cylinders. Revise nets and cross sections of solids with pupils. Guide pupils to identify the nets of common solids by opening the various shapes. Guide pupils to add flaps to the nefs, fold them and glue them to form the solids.	Make solid shapes from nets Which of these cannot be folded into a cube?

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to: 2.6.2 identify and classify quadrilaterals by their properties	Properties of quadrilateral: square, rectangle, parallelogram, kite, trapezium and rhombus	Guide pupils to identify and classify according to one or combination of the following properties - - diagonals - congruent sides - congruent angles - parallel sides - right angles - symmetries Given that $P=$ \{parallelograms\}, $Q=$ \{quadrilaterals with all sides equal\} and $\mathrm{R}=$ \{rectangles $\}$; if R, P and Q are subsets of the set $\mathrm{U}=\{\mathbf{m}, \mathbf{n}, \mathbf{o}, \mathbf{s}, \mathbf{t}$ and $\mathbf{u}\}$ illustrated in the box. What is (i) $P \cap Q$? and (ii) $P \cup R^{\prime}$?	Let pupils : Which of quadrilaterals ii. have no acute angles? iii. ave reflex angles? iv. airs of parallel sides v. ave diagonals bisecting at 90° vi. are symmetrical List the labels of the set B, where $\mathrm{B}=\{$ quadrilaterals with two lines of symmetry\}

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils
UNIT 2.7 (CONT'D) GEOMETRIC CONSTRUCTIONS	2.7.3 copy an angle	Copying an angle	Guide pupils to copy an angle equal to a given angle using straight edges and a pair of compasses only	copy a given angle
	2.7.4 construct angles of $90^{\circ}, 45^{\circ}, 60^{\circ}$ and 30°	Constructing angles of: 90°, $45^{\circ}, 60^{\circ}$, and 30°	Guide pupils to use the pair of compasses and a straight edge only to construct 90° and 60°. Guide pupils to bisect 90° and 60° to get 45° and 30° respectively.	$\begin{aligned} & \text { construct angles: } 90^{\circ}, \\ & 60^{\circ}, 45^{\circ} \text { and } 30^{\circ} \end{aligned}$
	2.7.5 construct triangles under given conditions	Constructing triangles	Guide pupils to use a pair of compasses and a straight edge only to construct: - Equilateral triangle - Isosceles triangle - Scalene triangle - A triangle given two angles and one side - A triangle given one side and two angles - A triangle given two sides and the included angle	construct a triangle with given conditions
	2.7.6 construct a regular hexagon	Constructing a regular hexagon	Guide pupils to construct a regular hexagon.	construct a regular hexagon with a given side
UNIT 2.8	2.8.1 identify and label axes of the number plane	Axes of the number plane	TLMs: Graph Paper, graph board, board instruments	draw number planes and label the axes
NUMBER PLANE			Guide pupils to draw the horizontal and vertical axes on a graph sheet and label their point of intersection as the origin (O).	
			Guide pupils to mark and label each of the axes with numbers of equal intervals and divisions.	
			,	

UNIT		$\begin{aligned} & \hline \hline \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:				Let pupils :
UNIT 2.8 (CONT'D) NUMBER PLANE	2.8.2	assign coordinates to points in the number plane	Coordinates of points [ordered pair (x, y)]	Assist pupils to identify the coordinates of a point and write them as ordered pair (x, y), where the first co-ordinate represent x the distance of the point from the origin along the horizontal axis and the second co-ordinate represent y its distance along the vertical axes.	write down the coordinates of points shown on the number plane
	2.8 .	locate and plot points for given coordinates	Locating and plotting points	Assist pupils to locate and plot points on the number plane for given coordinates.	plot given coordinates on the number plane
	2.8.4 2.8.5 2.8.6	draw graph of set of points lying on a line draw graph of two linear questions in two variables find the gradient of a line	The graph of a line	Guide pupils to plot points (lying on a straight line) and join them with a straight edge to give the graph of a straight line. E.g. plot the points $(0,0)(1,1)(2,2)(3,3)$ on the graph sheet and join them with a straight edge. Guide pupils to find the gradient of the line drawn.	draw the graph of a straight line given a set of points calculate the gradient of a line i. from a graph of a line ii. Given two points
UNIT 2.9 VECTORS	2.9.	locate the position of a point given its bearing and distance from a given point	Bearing of a point from another point	TLMs: Graph sheet, Protractor, Ruler Guide pupils to describe bearing of the cardinal points, North, East, South and West as $000^{\circ}\left(360^{\circ}\right), 090^{\circ}, 180^{\circ}$ and 270° respectively.	determine the bearing of a point from another point
				Guide pupils to locate the positions of points given their bearings from a given point.	

UNIT	$\begin{aligned} & \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils :
UNIT 2.10 PROPERTIES OF QUADRILATERALS	2.10.1 identify the properties of rectangle, parallelogram, kite, trapezium and rhombus	Quadrilaterals	TLMs: Cut-out shapes (rectangles, parallelograms, kites, trapeziums and rhombus) Rectangle: Guide pupils to discover that a rectangle is a foursided plane shape with each pair of opposite sides equal and parallel and the four interior angles are right angles. Let pupils also identify that a square is a rectangle with all sides equal. Parallelogram Guide pupils to discover that a parallelogram is a four-sided plane shape with each pair of opposite sides equal and parallel and each pair of interior opposite angles are equal. Note: Let pupils recognise that a rectangle is also a parallelogram. Kite Guide pupils to discover that a kite is a four-sided plane with each pair of adjacent sides equal. Trapezium Guide pupils to discover that a Trapezium is a four-sided plane shape with only one pair of opposite sides parallel. Rhombus Guide pupils to discover that a Rhombus is a foursided plane shape with all four sides equal. Note: Differentiate between the square and other types of Rhombus by using the interior angles.	identify types of quadrilaterals from a number of given shapes

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils :
UNIT 2.11 RATIO AND PROPORTION	2.11.1 express two similar quantities as a ratio 2.11.2 express two equal ratios as a proportion 2.11.3 solve problems involving direct and indirect proportions	Comparing two quantities in the form $\mathrm{a}: \mathrm{b}$ Expressing two equal ratios as a proportion	Guide pupils to compare two similar quantities by finding how many times one is of the other and write this as a ratio in the form $\mathrm{a}: \mathrm{b}$ E.g. Express 12 km and 18 km as a ratio $\text { i.e. } \begin{aligned} 12: 18 & =\frac{12}{18}=\frac{2}{3} \\ & =2: 3 \end{aligned}$ Guide pupils to express two equal ratios as a proportion. E.g. $12 \mathrm{~km}, 18 \mathrm{~km}$ and 6 hours, 9 hours can be expressed as a proportion as follows; $12 \mathrm{~km}: 18 \mathrm{~km}=6$ hours : 9 hours $2: 3=2: 3$ i.e. $\frac{12 \mathrm{~km}}{18 \mathrm{~km}}=\frac{6 \text { hours }}{9 \text { hours }}$ Guide pupils to solve problems involving direct proportion using: (a) Unitary method E.g. If the cost of 6 items is GH $\$ 1800$, find the cost of 10 items; $\begin{aligned} & \text { i.e. Cost of } 1=G H ¢ \frac{1800}{6} \\ & \\ & =\text { GH\&300 cost of } 10 \end{aligned} \begin{aligned} & =G H \$ 300 \times 10 \\ & =G H \$ 3000 \end{aligned}$ (b) Ratio method	find the ratio of one given quantity to another express given ratios as a proportion

UNIT	$\begin{gathered} \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EV ALUATION
UNIT 2.14 PROBABILITY	The pupil will be able to: 2.14.1 identify outcomes which are equally likely 2.14.2 find the probability of an outcome	Outcomes of an experiment (equally likely outcomes) Probability of an outcome	Guide pupils to identify random experiments. E.g. Tossing a coin, tossing a die or dice. Let pupils take the results of an experiment as outcomes. Let pupils identify outcomes of a random experiment with same chance of occurring as equally likely outcomes. Guide pupils to define the probability of an outcome. i.e. Probability is $\frac{\text { No. of successes }}{\text { Total No. of Possible outcomes }}$	Let pupils: list all the possible equally likely outcomes of a given experiment find the probability of an outcome

UNIT	$\begin{aligned} & \hline \text { SPECIFIC } \\ & \text { OBJECTIVES } \end{aligned}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
	The pupil will be able to:			Let pupils
UNIT 3.2 RIGID MOTION	3.2.1 identify an object (shape) and its image under a translation in a coordinate plane	Translation by a given vector	Revise the components of a vector in the number plane and ask them to trace or draw the path of a vector that take one point to another (its image) in the plane using graph sheets (or square paper). Guide pupils to translate given points using a given translation vector Guide pupils to see in the figure the single movement or transformation that takes the point A to the point (image) B translation by the vector ($\left.\begin{array}{l}3 \\ 1\end{array}\right)$. Guide pupils to find the single transformation that takes (i) the point B to C (ii) the line $A B$ to $P Q$, and (iii) shape $X Y Z$ to its image $X_{1} Y_{1} Z_{1}$ Guide pupils to draw a shape and its image under a translation by a given vector. Guide pupils to discuss the properties of objects under reflection with respect to its similarity, congruence and orientation.	draw a shape and its image under a translation by a given vector given points, lines and shapes in a plane, fiind the single trannslation movement that takes (i) a point (ii) a line and/or (iii) shape to its image, and stating the points/coordinates of the image given a translation vector and the points/coordinates of the image of a shape, draw the original shape in the coordinates plane.

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.2 (CONTD) RIGID MOTION	The pupil will be able to: 3.2.4 identify a rotation of an object (shape) about a centre and through a given angle of rotation	Rotation	Guide pupils to locate points which are images to point(s) in given lines under reflection E.g. In the figure, point A_{2} is the image of point A under a reflection in the y axis (or line $\mathrm{x}=0$). Also the point P is the image of point A under a reflection in the x axis (or line $y=0$). Guide pupils to find from the major diagonal (or $y=x$) the figure that a single transformation takes (i) the point P to its image A_{2}; (ii) the triangle $A_{1} B_{1} C_{1}$ to its image triangle $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$. Guide pupils to identify or draw the images of i. points, ii. lines or iii. shapes in reflection(s) in given axes in the coordinate planes x-axis and y-axis. Guide pupils to discuss the properties of objects under reflection with respect to its similarity, congruence and orientation. Let pupils give examples of objects that turn in everyday life to explain rotation as an amount of turning about a fixed point called centre of rotation. Guide pupils to rotate different shapes and observe the center (origin) and the angle of rotation. Guide pupils to observe the differences between clockwise and anti-clockwise rotations. Guide pupils to rotate objects (shapes) about a point (origin) and observe the number of times the object will return to its original position within 360°.	Let pupils: given points/coordinates of the image of a shape under reflection in a given line, draw the original shape in the coordinates plane. state the rotational symmetry of a given geometric shape identify designs in everyday life with rotational symmetries (e.g. adinkra symbols, logos, etc.)

UNIT	$\begin{gathered} \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.2 (CONTD) RIGID MOTION	The pupil will be able to: 3.2.5 identify a rotation of an object (shape) about a centre and through a given angle of rotation	Rotation	Guide pupils to rotate a shape (object) through a given centre and angle of rotation using graph sheets or square paper Guide pupils to state the object points and its corresponding image points under a given rotation E.g. In the figure, point A_{1} is the image of point A under an anticlockwise rotation of 90° about the origin (or an anticlockwise rotation of 270° about the origin). Also the line PQ is the image of line AC under a clockwise rotation of 90° about the origin (or an anticlockwise rotation of 270° about the origin). Guide pupils to locate points which are images to shape(s) under anticlockwise rotation through the angles $90^{\circ}, 180^{\circ}$, and 270° about the origin (and repeat for clockwise rotation). E.g. the triangle $A_{1} B_{1} C_{1}$ to its image triangle $A B C$ under a clockwise rotation through the angles 90°. Guide pupils to draw and state the points/coordinates of the images of given i. points, ii. lines or iii. shapes under a anticlockwise or clockwise rotation through the angles $90^{\circ}{ }_{6} 180^{\circ}$ and 270°. Guide pupils to discuss the properties of objects under rotation, with respect to its similarity, congruence and orientation.	Let pupils: state the object points/ coordinates and its corresponding image points/coordinates in a given rotation draw and state points/coordinates of the image of i. points, ii. lines or iii. shape under a anticlockwise or clockwise rotation through the angles $90^{\circ} 180^{\circ}$ and 270°. given the points/coordinates of the image of a shape under rotation through a given angle about the origin ($90^{\circ}, 180^{\circ}$, and 270°), draw the original shape in the coordinates plane.

UNIT	$\begin{gathered} \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.3 (ENLARGEMENTS AND SIMILARITIES	The pupil will be able to: 3.3.1 carry out an enlargement on a geometrical shape given a scale factor 3.3.2 determine the scale factor given an object and its image 3.3.3 state the properties of enlargements, with respect to its similarity, congruence and orientation	Enlargement of geometrical shapes Finding scale factor Properties of enlargement	Guide pupils to draw the enlargement of a geometrical figure with a given scale factor (E.g. triangles, rectangles) Note: In an enlargement there is a centre of enlargement and a scale factor. Ask students to state the single transformation that i. maps triangle P onto triangle P ii. maps triangle P onto triangle R in the figure Guide pupils to find the scale factor by determining the ratio of the sides of an image to the corresponding sides of the object. Guide pupils to investigate the characteristies of enlargements under the following conditions of the scale factor: - if the scale factor (\mathbf{K}) is negative; - if the scale factor (\mathbf{K}) is greater than 1 or less than - 1 ; - if the scale factor (\mathbf{K}) is between -1 and 1 (i.e. a fraction); Guide pupils to discuss the properties of objects under translation with respect to its similarity, congruence and orientation	Let pupils: draw an enlargement of a shape using a given scale factor find the scale factor of an enlargement state properties of enlargement
UNIT 3.3 (CONT'D)	The pupil will be able to:			Let pupils:

[^0]| UNIT | | $\begin{gathered} \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$ | CONTENT | TEACHING AND LEARNING ACTIVITIES | EVALUATION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ENLARGEMENTS AND SIMILARITIES | 3.3.4 | identify an object and its image as similar figures and write a proportion involving the sides of the two figures | Similar figures | Guide pupils to observe that the corresponding sides of similar figures are proportional
 Guide pupils to identify an object and its image as similar
 Guide pupils to determine a proportion involving the sides of two similar figures | identify similar figures in the environment (as a project)
 solve problems on proportion involving the sides of similar figures |
| | 3.3.5 | draw a plan (or model) of object(s) using a given scale | Scale drawing as a reduction | Guide pupils to identify scale drawing as a reduction of a figure. (E.g. scale drawing in map reading)
 Guide pupils to convert the sizes of real objects to scale.
 Guide pupils to draw real objects (plane shapes) to scale. | Get the dimensions of a house (by measuring) and draw it using an appropriate scale
 Calculate real distances on a on a building plan or map using scales on them |
| UNIT 3.4
 HANDLING DATA AND PROBABILITY | 3.4. | read and interpret information presented in tables | Reading and interpreting data in tabular form | Guide pupils to read, process and interpret data presented tables like rainfall charts and VAT/currency conversion tables.
 Guide pupils to perform experiments and make frequency tables of the results of a random survey or experiment (e.g throwing dice for a given number of times and taking traffic census)
 Guide pupils to calculate mode, median and mean from frequency distribution tables. | process data in tables by finding the
 - minimum
 - maximum
 - range
 - mode
 - median
 - mean and using it to interpret and draw conclusions on a given chart |
| | 3.4.2 | use probability vocabulary (i.e. likely, unlikely, very likely etc.) to state the chance of events occurring in everyday life | Probability terms | Assist students to put probability vocabulary in order of likeliness on a probability scale impossible, likely, unlikely, equally likely, certain, very likely etc. | Below are statements about real events in our everyday lives.
 A. A new born baby will be a girl
 B. It will rain in Winneba in the first week of January
 On the number line below, |

UNIT	$\begin{gathered} \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.5 MONEY AND TAXES	The pupil will be able to: 3.5.1 calculate wages and salaries	Calculating wages and salaries	TLMs: currency in the various denominations, VAT receipts/bills. Guide pupils to identify and explain wages and salaries. Guide pupils to calculate wages and salaries of workers.	Let pupils: calculate the daily and weekly wages of a worker calculate the monthly and annual salaries of a worker
	3.5.2 identify and explain various transactions and services at the bank	Transactions and services provided by banks	Guide pupils to identify the basic transactions and services provided by a bank. Guide pupils to find out the meaning of interest rates. Guide pupils to calculate: - Interest rates - Simple interest on savings and loans Guide pupils to calculate charges for certain services at the bank (E.g. Bank drafts, Payment order, etc)	calculate: - Interest rates - Simple interest on savings - Interest on loans - Other bank charges
	3.5.3 identify and explain types of insurance and calculate insurance premiums	Insurance (premiums and benefits)	Guide pupils to identify types of insurance policies. Guide pupils to calculate insurance premiums and benefits.	calculate total premium paid for an insurance coverage over a given period of time
	3.5.4 find and explain the income tax payable on a given income	Income Tax	Guide pupils to identify the government agency responsible for collecting income tax. Discuss with pupils incomes that are taxable. Guide pupils to calculate income tax payable by a person earning a given income.	calculate the income tax for a given income

UNIT	$\begin{gathered} \hline \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.5 (CONT'D) MONEY AND TAXES UNIT 3.6 ALGEBRAIC EXPRESSIONS	The pupil will be able to: 3.5.5 calculate VAT/NHIS on goods and services 3.6.1 change the subject of a formula, substitute values for given variables and simplify 3.6.2 multiply two simple binomial expressions	Calculating VAT/NHIS Change of subject Substitution of values Binomial expansion	TLMs: currencies in the various denominations, VAT receipts/bills Guide pupils to identify VAT/NHIL as a sales-tax added to the price of goods and services. Guide pupils to identify goods and services attracting VAT/NHIL. Guide pupils to calculate VAT/NHIL on goods and services. TLMs: cut-out, algebra tiles Guide pupils to change subjects of formulae that involve the inverses of the four basic operations. E.g. - make \boldsymbol{h} the subject of the formula $v=\pi r^{2} h$ - make \boldsymbol{x} the subject of the formula $\boldsymbol{p}=2$ $(x+y)$ Guide pupils to substitute values of given variables into algebraic expressions E.g. Given that $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ $\text { find } R \text { if } R_{1}=1 \text { and } R_{2}=3$ Revise addition and multiplication of integers with pupils Guide pupils to multiply two simple binomials using algebra tiles or semi-concrete materials (drawings). E.g. - $(a+2)(a+3)$ - $(a-2)(a+3)$ - $(a-2)(a-3)$	Let pupils: calculate VAT/ NHIL on given goods and services make a variable a subject of a given formula substitute given values into a formula and simplify expand the product of two simple binomials

UNIT	$\begin{gathered} \hline \text { SPECIFIC } \\ \text { OBJECTIVES } \end{gathered}$	CONTENT	TEACHING AND LEARNING ACTIVITIES	EVALUATION
UNIT 3.6 (CONT'D) ALGEBRAIC EXPRESSIONS	The pupil will be able to: 3.6.3 factorize expressions that have simple binomial as a factor	Factorization		Let pupils: solve problems involving factorisation of simple binomials
ALGEBRAIC EXPRESSIONS			Guide pupils to find the binomial which is a factor in expressions and factorize. E.g. $3(b+c)-2 a(b+c)=(b+c)(3-2 a)$	
			Guide pupils to regroup terms and factorize the binomial that is the common factor.	
			$\begin{aligned} \text { E.g. } & a b+a c+b d+c d \\ = & (a b+a c)+(b d+c d) \\ = & a(b+c)+d(b+c) \\ = & (b+c)(a+d) \end{aligned}$	
UNIT 3.7 PROPERTIES OF POLYGONS	sort triangles by their common properties	Types of triangles	TLMs: Cut-out plane shapes, Protractor, Scissors and Graph sheets	classify given triangles
			Revise the angle properties of triangles with pupils Guide pupils to perform activities to identify and draw the different types of triangles.	
			Guide pupils to state the differences in the triangles in terms of size of angle and length of the sides.	
	3.7.1 determine the sum of interior angles of a given polygon	Interior angles of polygons	Revision: Guide pupils to revise the sum of the interior angles of a triangle.	- the size of an interior angle of a regular polygon given the
			Guide pupils to determine the number of triangles in a given polygon	number of sides and the sum of the interior angles
			Guide pupils to relate the sum of interior angles of a triangle and the number of triangles in a polygon to determine the sum of inerior angles in polygons.	- sum of interior angles given the number of sides - number of sides given
			Guide pupils to determine the relation between the number of sides (\boldsymbol{n}) and the sum (\mathbf{S}) of the interior angles of regular polygons. i.e. $\mathbf{S}=(\boldsymbol{n}-2) \times 180^{\circ}$	
			Pose word problems involving the sum of interior angles of a polygon for pupils to solve.	

1. Prof. Damain Kofi Mereku - (Chairman), Associate Professor of Mathematics Education, University of Education, Winneba
2. Mr. Anthony Sarpong
(Co-ordinator), Assessment Services Unit, GES Headquarters, CRDD, Accra
3. Mr. Victor G. Obeng - Lecturer: Assessment in Mathematics (Distance Education) University of Education, Winneba.

Mathematics Tutor, Pope John SHS and Minor Seminary, Koforidua
4. Mr. Opoku Bawuah

Lecturer (Distance Education, UCC), H.O.D. Mathematics \& ICT, SDA College of Education, Asokore, Koforidua
5. Mr. J.Y. Muanah

Mathematics Tutor New Juabeng Secondary Commercial, Koforidua. and Former Mathematics Tutor
Ghana Senior High School, Koforidua
6. Mr. P. Dela Zumanu

Vice Dean of Students, Zenith University College, Accra.
7. Mr. Divine Tetteh Daitey
8. Mr. Eric Osei-Adofo

Inspectorate Division, Catholic Education Unit, Koforidua. Former Mathematics Teacher, Presby Women's College of Education Demonstration JHS, Aburi

Mathematics Teacher, St. Mary's Basic Anglican School, Kasoa
9. Mr. Ernest Agyapong

Mathematics Officer, West Africa Examinations Council, Accra

EXPERT REVIEWERS

Review comments to the syllabus development process were provided by:

1. Dr. Micheal Johnson Nabie Ph.D.
2. Mr. .Benjamin Yao Sokpe,

RESOURCE PERSON

1. Dr. Kofi B. Quansah
P. O. Box SC245, Tema

COORDINATORS

1. Ms. Victoria Achiaa Osei
2. Dr. Ato Essuman (Consultant)

SECRETARIAL STAFF

1. Miss Sandra Sahada Osman - Secretary, GES-Hqrts, Curriculum Research and Development Division, CRDD, Accra
2. Mrs. Cordelia Nyimebaare
3. Mr. Collins O. Agyemang
4. Mr. Thomas K. Baisie

Lecturer, Mathematics Education Department, University of Education Winneba
Lecturer, Department of Science and Mathematics Education, University of Cape Coast

Dep. Divisional Director, GES-Hqrts., Curriculum Research and Development Division, CRDD, Accra Ministry of Education, Accra

[^0]: Mathematics 2012

